
Automatically Deriving Symbolic Invariants for
PLC Programs Written in IL

Sebastian Biallas1, Jörg Brauer1, Stefan Kowalewski1 and Bastian Schlich2

1 Embedded Software Laboratory, RWTH Aachen University
lastname@embedded.rwth-aachen.de

2 Industrial Software Systems, ABB Corporate Research
firstname.lastname@de.abb.com

Abstract. In this paper, we propose a new approach to automatically
derive invariants from Programmable Logic Controller programs by sym-
bolically rewriting Instruction List code. These invariants describe the
relations between all variables and capture the behavior of the program.
Usually, invariants are created by users and verified using formal verifica-
tion techniques such as model checking or static analysis. The process of
manually deriving invariants, however, is error-prone and lengthy. Our
approach generates these invariants automatically and removes the need
to use formal verification techniques to verify them. Users only need
to inspect the generated invariants and compare them to the expected
program behavior. Using three example programs of different sizes, we
show that the generated invariants are easy to understand and that the
approach indeed scales for larger programs.

1 Introduction

Programmable Logic Controllers (PLCs) are frequently used in safety-critical
systems, where the application of formal verification methods is recommended [1].
In the past, formal methods such as model checking [2, 3] or static analysis [4] have
been applied to this task. Model checking, for instance, is used to verify whether
the model of a systems satisfies the system’s requirements. The generation of the
model can in many cases be done automatically. However, expressing requirements,
which are often given in natural language, in terms of temporal logic, is a very
time-consuming and error-prone process.

Despite the advances in this regard [5], this drawback limits the applicability
of formal verification methods to industrial applications. To alleviate this problem,
we propose to use a different approach: Instead of verifying a previously stated
specification, our method derives symbolic invariants.

Invariants as such have long served for reasoning about correctness of programs.
They can describe relations between the valuations of variables that hold after
the execution of a program fragment regardless of the input values [6]. Examples
of invariants are, for instance, x = −y or x ≤ 0.

To derive invariants, our approach considers an input program written in
Instruction List (IL) and iteratively rewrites this program into a symbolic repre-



sentation over quantifier-free linear arithmetic with Boolean connectives, following
the semantics of the involved operations.

Our method is different from existing work in that it directly targets PLCs
running in the cyclic execution mode, which consists of three steps, each of which
is executed atomically: reading inputs, processing data, writing outputs. Our
approach translates the semantics of the instruction set into linear constraints
and then uses a set of rewriting rules to derive invariants. Since PLCs are typically
running in safety-critical systems where timeliness is a strong concern, most of
these programs do not consist of long running loops (not to say, infinite loops).
This property ensures that the derived arithmetic expressions do not grow without
bounds.

In previous work, Pavlovic et al. [3] have translated programs written in
Statement List into the input language of the model checker NuSMV [7]. Their
most important contribution was the formal verification of the program depicted
in the left hand side of Fig. 1. As input for NuSMV, they used the following
specification given in the temporal logic LTL [8]:

G(PC = 2⇒ Byte = (Bit0 + 2 ∗ Bit1 + 4 ∗ Bit2 + 8 ∗ Bit3 (1)

+16 ∗ Bit4 + 32 ∗ Bit5 + 64 ∗ Bit6 + 128 ∗ Bit7))

In summary, this specification states that the program converts a bit-vector
of length 8 into an unsigned byte. The approach described by Pavlovic et al.,
however, has two drawbacks. On the one hand, the runtime requirements for
their approach is significant: Model checking took approximately 8h (even though
this could be reduced to 113s with manual intervention). On the other hand, the
specification needs to be formulated manually.

Our method can be seen as a response to these problems: By rewriting the
instructions in the program, it derives the stated invariant automatically. Further,
the runtime is essentially non-measurable, requiring less than 0.1s overall. In
summary, we make the following contributions:

– We detail an automatic approach for deriving invariants from PLC programs
written in IL.

– We present the effectiveness of this approach on three examples, where precise
and expressive invariants were derived.

Our approach is as follows. The program is first rewritten into a so-called
static single assignment (SSA) form, that explicitly shows all calculation steps
in a symbolic representation (cp. Sect. 2). Then, this explicit form is used to
derive symbolic invariants by analyzing the SSA expressions stored in output
variables at the end of the PLC cycle (cp. Sect. 3). We additionally present a
second example, where two invariants are derived depending on the actual input
values and a third example analyzing an implementation of a PLCopen safety
function block. The paper is concluded by presenting related work (cp. Sect. 4)
and discussing results and future work (cp. Sect. 5).



2 Rewriting of IL Programs Into SSA Form

For the application of our method, we are analyzing IL programs, which is is one
of the standardized languages for programming PLCs [9]. It is accumulator-based
and similar to many machine languages. With its simple semantics it is ideal for
deriving symbolic information.

We will motivate our approach with the FromByte program according to
Pavlovic et al. [3], which was translated to IL [2]. An excerpt of this program
is shown in Fig. 1 on the left side. It has eight Boolean inputs named in0 to
in7 and converts these to the byte represented by them. This is accomplished
by converting the inputs to the corresponding integer (false to 0 and true to 1),
multiplying them by their significance and adding up the results in a temporary
variable called temp.

For deriving symbolic invariants, we begin by rewriting IL programs into an
SSA form [10]. In this form, each IL instruction is written as an assignment. Each
of these assignments creates a new instance of the accumulator or a variable,
indicated by a superscript number. If, e. g., the current accumulator acc(i) is
incremented by 1, the SSA expression

acc(i+1) := acc(i) + 1

would be generated. The superscript number is called instance number. On the
left hand side (LHS) of such expressions, there is either a new instance of the
accumulator or a new instance of some program variable. The right hand is side
(RHS) is either

– a constant,
– a program variable that was not yet used on a LHS,
– an arithmetic, logic or relational operation of existing LHSs, or
– a data type cast. For example, a cast of the accumulator to the BYTE type is

written u8(acc), indicating the 8 bit unsigned type.

The transformation of the IL program into SSA form is performed auto-
matically. In order to achieve this, different execution paths are separated by
partitioning the possible ranges of input variables as presented in [2]. Additionally,
all loops are unrolled, removing conditional execution all together. Formally, the
translation is shown in Fig. 2 for the instructions LD, ST, ADD, SUB and AND. We
assume that there are already i instances of the accumulator, so a write to the
accumulator creates instance i + 1. For the store to byte variable var a new
instance var (j+1) is created assuming that there are already j instances. The
symbol x represents either a constant or an existing LHS and is unchanged.

For now, this approach is limited to integer arithmetic and Boolean logic.
Converting to other types results in separate invariants for all possible integer
values.

For the FromByte program the results are presented on the right side of Fig. 1.
In the first line, the instance acc(0) of the accumulator is created, resembling
the load instruction of the variable in0. After the 39 lines of the program, the



1 LD in0 acc(0) := in0
(0)

2 BOOL TO BYTE acc(1) := u8(acc(0))

3 ST temp temp(0) := u8(acc(1))

4 LD in1 acc(2) := in1
(0)

5 BOOL TO BYTE acc(3) := u8(acc(2))

6 MUL 2 acc(4) := acc(3) ∗ 2

7 ADD temp acc(5) := acc(4) + temp(0)

8 ST temp temp(1) := u8(acc(5))
...

...

38 ADD temp acc(29) := acc(28) + temp(6)

39 ST from byte from byte(0) := u8(acc(29))

Fig. 1. Program FromByte and equivalent SSA form

expression u8(acc(29)) (a BYTE cast of the 29th instance of the accumulator) is
assigned to the output variable from byte. Based on this final expression, we will
derive the invariant of this program in the next section.

3 Generation of Invariants

In this section we will use the SSA form defined in the last section to generate
symbolic invariants. The key idea is that for each variable introduced in SSA,
we still have symbolic information how the value was calculated if we inspect
the corresponding RHS. By inducing and thereby replacing all LHSs with the
corresponding RHS expressions until we reach constants or variables with an
instance number of 0, we can build up symbolic expressions for each LHS. If we
do this for the output variable from byte of the example program at the end of
the PLC cycle, we obtain the following resolution steps:

from byte = from byte(0)

= u8(acc(29))

= u8(acc(28) + temp(6))

= u8((acc(27) ∗ 128) + acc(25))

= u8((in7 ∗ 128) + u8(acc(24) + temp(5)))

. . .

= u8((in7 ∗ 128) + u8((in6 ∗ 64) + u8((in5 ∗ 32) + u8((in4 ∗ 16)

+ u8((in3 ∗ 8) + u8((in2 ∗ 4) + u8((in1 ∗ 2) + u8(in0)))))))).

Here, each step consists of a replacement of a LHS by its corresponding RHS
expression by a look-up in the list of SSA expressions. In the step from the
second to the third line, e. g., acc(29) was replaced by acc(28) + temp(6) (cf. Fig. 1
line 38). Afterwards, we can apply some simplifications on the expression found,
to make them more readable and easier to understand.



LD x acc(i+1) := x

ST var var (j+1) := u8(acc(i))

ADD x acc(i+1) := acc(i) + x

SUB x acc(i+1) := acc(i) − x

AND x acc(i+1) := acc(i) and x

Fig. 2. IL instructions and how the are represented in SSA form

This includes

– the folding of constants (e. g. (false or false) is rewritten as false),
– the removal of unnecessary casts,
– the elimination unused subexpressions (e. g. (true or expr) is rewritten as

true).

These steps are repeated until there are no further simplifications.
The crucial point here is that the final invariant for form byte is exactly the

invariant that was manually specified as the LTL formula (1) by Pavlovic et al.
This means we can derive the invariant without a time-consuming model checking
process here. Often, these invariants also give insight into the program behavior
without manual writing specifications.

Now, we will formalize the derivation of the invariants. For each non-temporary
program variable var, we have some instance var (0) which corresponds to the
value of the variable at the beginning of the PLC cycle. This can be either an
input value read from a sensor or the last value of the previous cycle. For each
output variable outi, on the other hand, we have some final value outi

(ni), where
ni is maximal. This corresponds to the final output value at the end of the PLC
cycle. If we derive the invariants for all variables outi

(ni) of the program using
this technique, we get the dependence — for each cycle — of the new variable
values on the old values (possibly input values) as symbolic invariants.

These invariants sometimes depend on the actual values of the inputs, which
we will now show on an additional example. The program shown in Fig. 3 has
two variables X, Y of type BYTE, where X is an input variable and Y is an internal
variable. In each cycle, Y is decremented if X is greater than 100, otherwise
incremented. Since this program has two different execution paths for X ∈ [0, 100]
and X ∈ [101, 255], we get two different invariants for this program. Generating
the invariants for the second program, results in the two invariants

X ∈ [0, 100] =⇒ Y (1) = u8(Y (0) + 1)

and X ∈ [101, 255] =⇒ Y (1) = u8(Y (0) − 1)

for the distinct execution paths, where Y (0) and Y (1) are the values in Y before
and after executing the cycle.

As a real-world example, we also generated invariants for an implementation
of the PLCopen safety function block emergency stop [11], kindly provided
by Soliman and Frey [12]. The function block has 5 Boolean inputs and the



1 VAR INPUT X: BYTE; END VAR
2 VAR Y: BYTE; END VAR
3 LD X
4 GT 100
5 JMPC m
6 LD Y
7 ADD 1
8 ST Y
9 RET

10 m: LD Y
11 SUB 1
12 ST Y
13 RET

Fig. 3. Example program with input-dependent invariants

implementation uses 11 internal variables (giving 216 possible configurations).
The implementation uses the internal variables to control the current state while
monitoring the emergency stop signal, the reset function, etc. With our method,
we derive 75 invariants for the function block. A typical invariant is:

Activate(0) = false Ready(1) = false

∧ S1
(0) = false =⇒ ∧ S EStopOut (1) = false

∧ S2
(0) = true ∧ S1

(1) = true ∧ S2
(1) = false.

The variables S1 and S2 indicate the states idle and init, while the other variables
are the input and output variables according to the PLCopen specification. The
variables of the program not shown are not relevant for the invariant. By this
invariant, we can deduce that if we are in state init and the Activate signal is
reset, the outputs Ready and S EStopOut are reset and the state idle is signaled,
independently of all other inputs or program states.

To gain an overview over program behavior, we provide a means for filtering
the invariants for certain inputs or outputs. There are, for instance, only 10
invariants generated where the input Activate is false. Similar invariants can be
inspected for the state variables S i or output variables like S EStopOut.

4 Related Work

Transferring formal verification methods from theory to practical applications
is an active topic, and particularly important for safety-critical systems. This
includes, but is not limited to model checking [2] and static program analysis
[13, 4]. Additionally, techniques based on exact decision procedures have found
application, for instance, the work by Sülflow and Drechsler [14] on SAT-based
equivalence checking. More comprehensive overviews of existing approaches for
formlization and verification of PLC programs are given elsewhere [15–17].

Invariant generation using program rewriting is a widely appreciated concept
in the fundamental research on program verification [18], e.g., in the context of



verifying heap-manipulating programs [19]. However, to the best of our knowledge,
the concept of applying rewriting logic was not applied to PLC programs before,
where it allows to derive strong invariants due to the limitations of the underlying
hardware platform. Often, even simple logics as the one described in this work
suffice for deriving expressive invariants.

5 Discussion & Future Work

Invariants are a simple means to represent properties of programs. The logic
considered in this paper — in contrast to other logics used for specifying properties
such as LTL or CTL — is easy to formulate and understand. Usually, invariants
are used in formal verification techniques like model checking to specify properties
to be proven. In this paper, we proposed a new approach that automatically
derives invariants for all variables of a program, i. e., an over-approximation of
properties of the variables is generated automatically. Thus, users do not need to
provide properties of a program and use formal verification techniques to prove
these properties, which might be error-prone and lengthy. The invariants derived
can then be analyzed by users to check whether the program behaves as expected.

Two specifics enabled the automatic generation of invariants for PLC programs
and facilitated the scalability of the approach described: the underlying hardware
of the PLCs and the usage of SSA form. The underlying hardware of PLCs is
simple due to its use in safety-critical systems, well structured, and extensively
documented. The use of a SSA form enables to come up with invariants, which
are, for example, only valid after the last iteration of a loop during a PLC cycle
as in the case of from byte variable. This is especially helpful in PLC programs
as the values of variables are only visible after the execution of a complete cycle
and not during the cycle.

As shown by our examples, the approach delivers invariants that capture
the behavior of programs in a way easily accessible by users. Additionally, the
examples show that the approach also scales well for larger programs.

There are several directions for future improvement. First, not all properties
can be expressed using invariants and it is therefore useful to investigate whether
the same approach can be used to automatically generate properties using a more
complex logic. Furthermore, users want to check whether their properties are
satisfied by the program. This can be achieved by checking whether their invariants
are entailed by the invariants generated by our approach. If the user-provided
invariants are satisfied, it could be useful to also provide information about the
additional properties which are satisfied by the program but not specified by
the users. This process could be supported by a graphical representation of the
invariants.

Acknowledgment

The work of Sebastian Biallas was supported by the DFG. The work of Jörg
Brauer and Stefan Kowalewski was, in part, supported by the DFG Cluster



of Excellence on Ultra-high Speed Information and Communication (UMIC),
German Research Foundation grant DFG EXC 89.

References

1. International Electrotechnical Commission: IEC 61508: Functional Safety of Electri-
cal, Electronic and Programmable Electronic Safety-Related Systems. International
Electrotechnical Commission, Geneva, Switzerland (1998)

2. Schlich, B., Brauer, J., Wernerus, J., Kowalewski, S.: Direct model checking of
PLC programs in IL. In: DCDS. (2009) To appear.

3. Pavlovic, O., Pinger, R., Kollmann, M.: Automated formal verification of PLC
programms written in IL. In: VERIFY. Number 259 in Workshop Proce., CEUR-
WS.org (2007) 152–163

4. Huuck, R.: Software Verification for Programmable Logic Controllers. Dissertation,
University of Kiel, Germany (April 2003)

5. Mertke, T., Frey, G.: Formal verification of PLC-programs generated from signal
interpreted petri nets. In: 2001 IEEE International Conference on Systems, Man,
and Cybernetics. Volume 4., IEEE Computer Society Press (2001) 2700–2705

6. Hoare, C.A.R.: An axiomatic basis for computer programming. Comm. of the ACM
12(10) 576–585

7. Cimatti, A., Clarke, E.M., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV version 2: An opensource tool for symbolic
model checking. In: CAV (2002). Volume 2404 of LNCS., Springer (2002) 241–268

8. Emerson, E.A.: Temporal and Modal Logics. In: Handbook of Theoretical Computer
Science. Volume B. The MIT Press (1991) 995–1072

9. International Electrotechnical Commission: IEC 61131-3 Ed. 1.0: Programmable
Controllers — Part 3: Programming languages. International Electrotechnical
Commission, Geneva, Switzerland (1993)

10. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Effciently
computing static single assignment form and the control dependence graph. ACM
Trans. Program. Lang. Syst. (1991) 451–590

11. PLCopen TC5: Safety Software Technical Specification, Version 1.0, Part 1: Con-
cepts and Function Blocks. PLCopen, Germany (2006)

12. Soliman, D., Frey, G.: Verification and validation of safety applications based on
PLCopen Safety Function Blocks using Timed Automata in UPPAAL. In: DCDS.
(2009) To appear.

13. Bornot, S., Huuck, R., Lukoschus, B., Lakhnech, Y.: Utilizing static analysis for
programmable logic controllers. In: ADPM. (2000) 183–187

14. Sülflow, A., Drechsler, R.: Verification of plc programs using formal proof techniques.
In: FORMS/FORMAT, L’Harmattan (2008) 43–50

15. Baresi, L., Mauri, M., Monti, A., Pezze, M.: PLCTools: Design, formal validation,
and code generation for programmable logic controllers. In: SMC. (2000) 2437–2442

16. Mertke, T., Menzel, T.: Methods and tools to the verification safety-related control
software. In: SMC. (2000) 2455–2457

17. Bani Younis, M., Frey, G.: Formalization of existing PLC programs: A survey. In:
CESA. (2003)

18. Nelson, G.: Verifying reachability invariants of linked structures. In: POPL, ACM
(1983) 83–47

19. Lahiri, S.K., Qadeer, S.: Back to the future: revisiting precise program verification
using SMT solvers. In: POPL, ACM (2008) 171–182


